
 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4949 227

The Art of Creating Software Requirements

Adnan Shaout
1
 and Anthony Walker

2

The Electrical and Computer Engineering Department, The University of Michigan – Dearborn
1,2

Abstract: The definition of good software requirements has been the topic of numerous debates between software

engineers and test engineers for a long time. The purpose of this research is to find out what could be contributing to

the various methods and rules/guidelines for writing requirements. In doing this research, we found out that it is not so

much that there are different methods to writing requirements it is more so that there is insufficient training on writing

requirements. We will go into detail on what the IEEE standard states are the characteristics of well-formed

requirements that support our view of how requirements should be formed. We will also touch a bit on how this debate

can be clarified.

Keywords: Software Requirements, Test Engineers, Software Engineers, IEEE Standard, Characteristics of Software

Requirements.

I. INTRODUCTION

The characteristics of a well written requirement are that

the requirement is unambiguous, consistent, complete,

singular, feasible, traceable, and verifiable [1]. The

majority of the debate on writing requirements seemed to

be on what should be contained in a requirement. Zowghi

and Paryani [3] discuss in their paper that teaching

requirement engineering should be through role playing.

This is the underlying concept that is causing the debates.

The art of requirements engineering is not taught at the

academic level. Due to the importance and the cost

savings that is constantly linked to requirements, this

should be a topic that is covered in academia as well as

reinforced in the workplace. Peer reviews are an excellent

way to get feedback on requirements.

This also allows for the opportunity for the requirements

engineer to have others insight on various characteristics

of writing software requirements. The information that the

IEEE standard for writing well-formed requirements [1]

further supports the fact that the art of writing

requirements needs to be discussed more in detail in both

academia and the workplace.

 Creating software requirements is more than just writing

requirements. As noted in [6], software requirements

engineering consists of software requirements elicitation,

software requirements analysis, software requirements

specification, software requirements verification and

software requirements management. In the following

sections, we will expand on how each of these

characteristics contributes to writing good software

requirements and provide a detailed explanation of each

characteristic.

This paper will also provide an overview of the various

methods of creating software requirements. It also

presents a comparison of the various methods and

rankings.

II. CHARACTERISTICS OF SOFTWARE REQUIREMENTS

An unambiguous requirement is one that can be

interpreted in only one way, easy to understand and stated

simply [1]. In certain situations where in an effort to

sound really intelligent, requirements may not be stated in

a simple way. The complexity of software today is high

enough without adding more to it by not simplifying

requirements. Taking the extra time to ensure that the

requirement is being stated in a simple way can reduce the

time spent trying to make sure that it is being met. By

focusing on keeping the wording of the requirement

simple, this may lead to the requirement being easy to

understand. Due to the global nature of software and

requirements engineering, the use of natural language in

writing requirements is a point of concern. There‟s a high

possibility that the engineers who are tasked with

implementing and verifying the requirements do not have

the same native language as the engineer who wrote the

requirements.

In an effort to reduce the language ambiguities associated

with writing software requirements, there have been

various studies to come up with solutions to resolve

language barrier issues. One of those solutions is the

Model based Object oriented approach to Requirements

Engineering (MORE) [2]. While modeling requirements

using UML (Unified Modeling Language) and other object

oriented techniques can be used to ensure requirements are

unambiguous, it is important to understand that not all

software requirements can be captured in a single diagram.

It is clear that these techniques can aid in the

understanding of the system and design, however a limit

has to be instilled as to how much detail is put into these

diagrams. Too much information can lead to

implementing the design of the system instead of simply

meeting the requirements of the system. Requirements

should state „what‟ is needed, not „how‟ [1]. A common

technique used to identify a requirement is that the

sentence uses the word „shall‟. The use of words such as

„could‟ and „should‟ are not to be used when writing

requirements as these types of words are non-binding [1].

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4949 228

The following are types of ambiguous terms that engineers

shall avoid using when writing requirements [1]:

 Superlatives (such as „best‟, „most‟)

 Subjective language (such as „user friendly‟, „easy to

use‟)

 Vague pronouns (such as „it‟, „this‟, „that‟)

 Ambiguous adverbs and adjectives (such as „almost

always‟, significant‟, „minimal‟)

 Open-ended, non-verifiable terms (such as „provide

support‟, „but not limited to‟, „as a minimum‟)

 Negative statements (such as statements of software

capability not to be provided)

If any of these types of terms are used in requirements,

they will lead to having a software system that does not

meet the intended purpose as expected by the customer.

Requirements cannot be open-ended, use negative

statements, and be vague or subjective. Using these types

of terms will make the requirements engineering phase last

longer than it otherwise would without using such terms.

The use of superlatives makes requirements seem to be

more suggestive as opposed to something that is required.

The next characteristic of a well written requirement is

that it is singular. This means that the requirement should

address only one item. If there is not only one item in the

requirement without the use of conjunctions [1], the

requirement is overloaded. An overloaded requirement is

not simple to understand. Sometimes this may be done

unintentionally due to insufficient training on writing

requirements. A requirement may require multiple inputs

or conditions to be met, however it must remain

unambiguous, i.e. be stated simply and easy to understand.

An example of an overloaded requirement is as follows:

 Accelerometer data shall be collected at a rate of

1ms and after 10ms the data will be averaged and

provided to other software modules via an API.

This requirement can be broken down into 3 separate

requirements as follows:

 The software shall collect accelerometer data at a

rate of 1ms.

 The software shall average 10 samples of data and

store it for later processing

 The averaged accelerometer data shall be provided

to other software modules via an API.

A requirement must also be consistent, meaning the

requirement does not conflict with other requirements [1].

Creating multiple requirements that have the same

meaning adds confusion to an already potentially complex

system or component. This duplication can lead to wasted

time; multiple test cases being created that verify the same

functionality in a different way and add increases the

difficulties encountered when dealing with the language

barrier on making requirements unambiguous.

A well written requirement is also complete and feasible.

Complete means that the requirement needs no further

amplification because it is measurable and sufficiently

describes the capability and characteristics to meet the

customer‟s need [1]. This does not mean that the

requirement or set of requirements to meet this need

should talk about how the software needs to be designed to

meet the requirement. If a requirement locks the designer

into a certain implementation this is typically not a good

requirement. There could be numerous ways to implement

software in order to meet a requirement or set of

requirements. Unless the architecture or algorithm to use

is defined by the company as a standard to follow,

requirements need to be written without imposing

unnecessary bounds on the solution space [1].

Having an understanding of what the system is capable of

while working on the software requirements is helpful.

This will help in determining the feasibility of a

requirement. The requirement must fit within the system

and be technically achievable [1]. For example, a

requirement that states:

 The software shall collect 16-bit acceleration data from

the x-axis sensor at a rate of 250us. is not technically

feasible if the system only allows for acceleration data to

be collected at a rate of 2ms.

The last characteristics of well-formed requirements are

that they are traceable and verifiable. The traceability of

the requirements goes from top to bottom and vice versa.

From the customer document to the test case in

verification, each software requirement must be traceable.

If it cannot be traced to a customer requirement and to a

point where it is verified, there is a gap in the software,

documentation or test case(s).

If sufficient time is spent with external and internal

customers during the early phases of requirements

engineering, a lot of time and ultimately money can be

saved. The savings comes from spending the time upfront

to clearly define the expectations (i.e. requirements) of the

system that is being designed to meet the requirements of

the customer. The pie chart in figure 1 [7] shows where

the majority of bugs are introduced in a system (RE means

Requirements Engineering):

Figure 1. Percentage of bugs in a topical process phases.

III. SOFTWARE REQUIREMENTS THROUGH MODELING

One of the modeling techniques in existence today is

referred to as the RDDA (Requirements-Driven Design

Automation) framework which uses the SysML (Systems

Modeling Language) framework. As stated in [4], SysML

supports several types for describing requirements,

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4949 229

including a Requirements Diagram, where textual

requirements statements and their inter-relationships are

represented visually. As part of the RDDA framework

project, the team created a method for users to add sematic

descriptions in SysML for specifying system resource and

QoS (Quality of Service) constraints.

 Figure 2 shows an example of a requirements diagram

using SysML [4] that describes the requirements and

constraints for an LBS application.

Figure 2. A requirement diagram example.

The use of modeling as described in the RDDA framework

is a good method, but it is still imperative that one will be

able to accurately create textual software requirements.

One of the input methods described with the RDDA

framework is that textual requirements can be

implemented visually.

Using this modeling technique presents the opportunity to

remove the language ambiguities associated with textual

requirements. It is generally easier for the customer to

understand how their requirements are being met

pictorially versus trying to understand written

requirements that are not written in their native language.

The most important aspect of software requirements that

must not be compromised with modeling is that

requirements must be written without

imposing unnecessary bounds on the solution space [1].

IV. REMOVING AMBIGUITY IN NATURAL LANGUAGE

Denger, Berry and Kamsties [5] discuss how to create

higher quality requirements through patterns. By defining

and using patterns, the ambiguities associated with writing

requirements can be resolved as long as the patterns are

well defined. Figure 3 [5] lists some of the various

patterns.

Sentence patterns are classified as two types: discrete

behavior and continuous behavior. As stated in [5], a

discrete behavior pattern specifies a systems reaction in

response to an event.

A continuous behavior pattern specifies a reaction of the

system that is started by a certain event and is performed

until another event occurs or a certain condition comes

true [5].

An event pattern is a change in the value of a variable or a

change in the system state. A condition pattern is a test of

the current value of a variable or a test of the current value

of a variable or a test of the current system state [5].

Using the patterns they created, they were able to remove

several ambiguities found in the following requirement:

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4949 230

Figure 3. A list of patterns [5].

R3.1.4. Stuttered dial tone: EMS shall support notification

by stuttered dial tone played for as long as no key is

pressed; that is, EMS shall interact as necessary with

other systems so that when the subscriber has one or more

new messages, the subscribed phone will give a stuttered

dial tone rather than a standard dial tone.

Here are the flaws of this requirement as stated in [5]: The

first clause, “EMS shall support notification by stuttered

dial tone played for as long as no key is pressed”, is

refined in the second clause, “EMS shall interact as

necessary with other systems so that when the subscriber

has one or more new messages, the subscribed phone will

give a stuttered dial tone rather than a standard dial tone.”,

following the phrase “that is”. The first clause is

recognized as matching RoRP (Realization of Reaction

Pattern). The clause contains a condition “when the

subscriber has one or more messages” and a reaction “the

subscriber‟s phone plays a stuttered dial tone”. The event

that triggers the reaction is not specified because the event

is implicitly described via the vague phrase “EMS shall

interact as necessary with other systems” and the name of

the requirement “Stuttered dial tone”. This vague phrase

contains two sources of imprecision, namely the phrases

“as necessary” violates one of our authoring rules, namely

the one that is against using phrases that are open to

subjective interpretations. The phrase “other systems” is

also ambiguous, since it is not clear which other systems

are referenced. Finally the phrase “rather than a standard

dial tone” is removed as redundant, since a stuttered dial

tone is not the standard dial tone.

 In addition to this analysis, we feel there are too many

requirements listed in the single requirement of the

stuttered dial tone. Here is the rewritten requirement using

the language patterns:

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4949 231

 3.1.4 FR.Stuttered_Dial_Tone: If the subscriber picks

up the phone and a message is waiting, then the

subscriber’s phone plays a stuttered dial tone for as long

as no key is pressed. For this purpose, the central office

system sends the signal ‘has new messages’ to the

subscriber’s phone. Then, if the subscriber’s phone state

is ‘has new’, the EMS sends the signal new messages’ to

the central office. Then, the central office sends a

stuttered dial tone to the subscriber’s phone for as long as

no key is pressed. If the subscriber’s phone state is ‘has

no new’, the EMS sends the signal ‘no new messages’ to

the central office. Then, the central office sends a

standard dial tone to the subscriber’s phone, for as long

as no key is pressed.

Both the original requirement and the rewritten

requirement still have room for improvement in my

opinion. Neither requirement covers one of the

characteristics of a well written requirement, which is that

it is singular. We would take the rewritten requirement

further and break it up into 6 individual requirements as

follows:

 If the subscriber picks up the phone and a message is

waiting, the subscriber’s phone shall play a stuttered dial

tone until a key is pressed.

When there is a message waiting and the subscriber’s

phone is playing a stuttered dial tone, the central office

system shall send the signal ‘has new messages’ to the

subscriber’s phone.

If the subscriber’s phone state is ‘has new’, the EMS shall

send the signal ‘new messages’ to the central office.

 While the state of the subscriber’s phone is ‘has new’,

the central office shall send a stuttered dial tone to the

subscriber’s phone until a key is pressed.

 If the state of the subscriber’s phone is ‘has no new’,

the EMS shall send the signal ‘no new messages’ to the

subscriber’s phone.

 While the state of the subscriber’s phone is ‘has no

new’, the central office shall send a standard dial tone to

the subscriber’s phone until a key is pressed.

Each of these requirements is now singular, complete,

consistent, unambiguous, feasible, traceable and verifiable.

While creating and using natural language patterns seems

like a good idea, we still believe there are flaws to it (as

shown above by my rewriting of the requirement to make

it singular). A pattern created by one group has a high

possibility of being created completely different by

another group to address the same topic/concept.

The Unified Modeling Language (UML) [9] is a standard

maintained by the Object Management Group (OMG).

Earlier versions of the UML were a convergence of three

prominent OO (Object Oriented) modeling methods: The

Object Modeling Technique (OMT) [11], the Booch

Method [12] and the Jacobson‟s Object-Oriented Software

Engineering (OOSE) approach [13] [10]. According to [9]

and [10], use cases are used to capture the requirements of

a system. The following text will describe a use case

diagram and its notation.

Figure 4 shows an example of a use case diagram of an

ATM system.

Figure 4. A use case Diagram of an ATM system.

A use case is depicted by an ellipse with the name of the

use case in it (the name of the use case can appear below

the ellipse as well instead of inside of it). It is standard

practice for a use case to have a name that is associated

with its functionality/purpose. Each use case specifies

some behavior/functionality that the subject can perform

in collaboration with one or more actors [9]. This

behavior /functionality must always be completed for the

use case to complete [9]. It is deemed complete if the

subject will be in a state in which no further inputs or

actions are expected and the use case can be initiated again

or in an error state [9]. The subject of a use case (depicted

by the rectangle) could be a physical system or any other

element that may have behavior, such as a component,

subsystem, or class [9].

Each stick figure is referred to as an actor. The name of

the actor is typically placed above or below it. “An actor

specifies a role played by a user or any other system that

interacts with the subject, but which is external to the

subject (i.e., in the sense that an instance of an actor is not

a part of the instance of its corresponding subject). Actors

may represent roles played human users, external

hardware, or other subjects. Note that an actor does not

necessarily represent a specific physical entity but merely

a particular facet (i.e. “role”) of some entity that is

relevant to the specification of its associated use cases.

Thus, a single physical instance may play the role of

several different actors and, conversely, a given actor may

be played by multiple different instances” [9].

An alternative of the UML conventional use case is

Essential Use Case (EUC). According to [8], the EUC

approach is defined by its creators Constantine and

Lockwood as a “structured narrative, expressed in a

language of the application domain and of user,

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4949 232

comprising a simplified, generalized, abstract, technology

free and independent description of one task or interaction

that is complete, meaningful, and well-defined from the

point of view of users in some role or roles in relation to a

system and that embodies the purpose or intentions

underlying the interaction” [14].

The EUC description is generally shorter than a

conventional UML use case because it only comprises the

essential steps (core requirements) of intrinsic user interest

[8]. Figure 5 shows an example taken from [8] (which is

adapted from [15]) that shows how natural language

requirements are translated into EUCs.

Figure 5. An example of a natural language requirements being translated into EUCs.

As stated in [8] EUCs simplify captured requirements

compared to conventional UML use cases, requirements

engineers still face the problem of “finding the correct

level of abstraction, which also takes time and effort” [16].

V. COMPARISON AND RANKING OF TECHNIQUES

Table 1 shows the comparison of various techniques with

respect to several characteristics such as singular,

unambiguous and complete.

Table1 : Comparison Of Techniques

Technique Characteristics

S
in

g
u
la

r

U
n

am
b

ig
u

o
u

s

C
o
n

si
st

en
t

C
o

m
p

le
te

F
ea

si
b

le

T
ra

ce
ab

le

V
er

if
ia

b
le

Natural

language

(following

IEEE

guidelines)

1 1 1 1 2 2 2

UML 2 2 2 2 1 1 1

MORE 5 4 5 4 5 4 4

Patterns 3 5 3 3 3 5 5

EUC 4 3 4 5 4 3 3

The characteristic of each technique is ranked 1 through 5

(1 is the highest rank, 5 is the lowest)

Based on the comparison shown in table 1, we still believe

the using natural language is the best option for capturing

software requirements with the use of UML closely

following it. Ultimately we came to this conclusion based

on our own experiences capturing requirements as well as

what is stated in [9]. According to [9], “the detailed

behavior defined by a use case is notated according to the

chosen description technique, in a separate diagram or

textual document”. This further supports the theory that

there are limitations on how much detail can be put into a

diagram. As more and more detail of the functionality of a

requirement (or requirements block) is captured in a

diagram, you begin to get into the detailed design of how

the requirement is to be implemented rather than what is to

be implemented.

 UML deserves a very close second place ranking given

the ease of communicating across multiple teams,

backgrounds and it provides the ability to remove

ambiguities of using natural language. As engineers, the

goal of communicating what is needed must be kept

simple. For example, the instructions on how to assembly

a bookshelf contains both pictures and words. UML

brings that same philosophy to software requirements

engineering. Keeping things as simple as possible greatly

reduces the chance for misinterpretations and missed

requirements.

 EUC deserved a rank of third mostly due to the fact that

it also uses use cases. An issue with this technique is that

it may be too simplified. As stated in [8], “some of the

main reasons EUCs are not commonly used are: a lack of

tool support; engineer‟s lack of experience in extracting

essential interactions from requirements; and a lack of

integration with other modeling approaches” [16] [17].

There is also currently no tool that exists to support

engineers working with EUC models [8].

 Patterns as described in [5] received a rank of fourth

due to the lack of using use cases or diagrams. Natural

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4949 233

language lacks the ability to communicate to the customer

or end user who is not a software engineer. This concept

does offer the benefit of being able to define natural

language requirements as discussed in [1] and in this

report. By combining the natural language technique

along with patterns, the ambiguities can be virtually

eliminated.

VI. CONCLUSION

The purpose of this research was to focus solely on the

software requirements specification component of

software requirements engineering. However we found it

difficult to talk about the various aspects of requirements

specification without thinking of what it takes to get to this

point. Each of these components is an important piece to

writing good software requirements whether it is using

one‟s native language or through modeling.

 We would rank the methods discussed in this paper in

the following order: following the IEEE requirements

fundamentals (guidelines), using language patterns and

finally modeling. However, we think a solution that

should be investigated further is a combination of all three

facets discussed here. We feel there is an opportunity to

combine all the pros of each technique into one technique

that would be very useful in requirements engineering.

REFERENCES

[1] Systems and software engineering – Life cycle processes –

Requirements engineering, IEEE 29148, 2011-12.
[2] C.W. Lu, W.C. Chu, C.H. Chang, C.H. Wang, “A Model-based

Object-oriented Approach to Requirement Engineering (MORE),”

presented at the 31st Annual International Computer Software and
Applications Conference, 2007.

[3] D. Zowghi, S. Paryani, “Teaching Requirements Engineering

through Role Playing: Lessons Learnt,” proceedings of the 11th
IEEE International Requirements Engineering Conference, 2003.

[4] I. Cardei, M. Fonoage, R. Shankar, “Model Based Requirements

Specification and Validation for Component Architectures,”
SysCon 2008 – IEEE International Systems Conference, 2008

[5] C. Denger, D. Berry, E. Kamsties, “Higher Quality Requirements

Specifications through Natural Language Patterns,” Proceedings of
the IEEE International Conference on Software – Science,

Technology & Engineering (SwSTE‟03), 2003

[6] R. Thayer, M. Dorfman, “Introduction to Tutorial: Software
Requirements Engineering”, 2000

[7] K. Khan, P.V.V. Kumar, A. Ahmad, T. Riaz, W. Anwer, M.
Suleman, O. Ajmal, T. Ali, A.V.K. Chaitanya, “Requirement

Development Life Cycle: The Industry Practices”, Ninth

International Conference on Software Engineering Research,
Management and Applications, 2011

[8] M. Kamalrudin, J. Grundy, J. Hosking, “Tool Support for Essential

Use Cases to Better Capture Software Requirements”, Proceedings
of the IEEE/ACM International Conference on Automated software

engineering, pages 255-264, 2010

[9] The Object Management Group (OMG). Unified Modeling
Language. Version 2.0, OMG, http://www.omg.org/spec/UML,

July 2005

[10] Robert France, Cris Kobryn, “UML for Software Engineers”, IEEE,
2001

[11] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.

Object-Oriented Modeling and Design. Prentice Hall, 1991
[12] Grady Booch. Object-Oriented Analysis and Design with

Applications. Benjamin/Cummings, Menlo Park, CA, Second

edition, 1994

[13] I. Jacobson. Object oriented software engineering. Addison-

Wesley, 1992
[14] Constantine, L.L. and Lockwood, A.D.L. Software for use: a

practical guide to the models and methods of usage-centered

design. ACM Press/Addison-Wesley Publishing Co., 1999.
[15] Constantine, L.L. and Lockwood, A.D.L. Structure and style in use

cases for user interface design. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA 2001.
[16] Biddle, R., Noble, J. and Tempero, E. April 2000. Pattern for

Essential Use Cases. Technical Report. Victoria University of

Wellington at Wellington, New Zealand
[17] Biddle, R., Noble, J. and Tempero, E. “Essential use cases and

responsibility in object-oriented development”, Australian

Computer Science Communications, 2002.

BIOGRAPHIES

Dr. Adnan Shaout is a full

professor and a Fulbright Scholar in

the Electrical and Computer

Engineering Department at the

University of Michigan – Dearborn.

At present, he teaches courses in

logic design, computer architecture,

cloud computing, fuzzy logic and

engineering applications and

computer engineering (hardware and software). His

current research is in applications of software engineering

methods, computer architecture, embedded systems, fuzzy

systems, real time systems and artificial intelligence. Dr.

Shaout has more than 33 years of experience in teaching

and conducting research in the electrical and computer

engineering fields at Syracuse University and the

University of Michigan - Dearborn. Dr. Shaout has

published over 170 papers in topics related to electrical

and computer engineering fields. Dr. Shaout has obtained

his B.S.c, M.S. and Ph.D. in Computer Engineering from

Syracuse University, Syracuse, NY, in 1982, 1983, 1987,

respectively.

Anthony Walker – A graduate student (Master of Science

in Software Engineering) from the department of

Electrical and Computer Engineering at the University of

Michigan - Dearborn.

	I. Introduction
	II. Characteristics Of Software Requirements
	III. Software Requirements Through Modeling
	One of the modeling techniques in existence today is referred to as the RDDA (Requirements-Driven Design Automation) framework which uses the SysML (Systems Modeling Language) framework. As stated in [4], SysML supports several types for describing re...
	Figure 2 shows an example of a requirements diagram using SysML [4] that describes the requirements and constraints for an LBS application.

	IV. Removing Ambiguity In Natural Language
	V. Comparison and ranking of techniques
	VI. Conclusion
	References

